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1. VIBRATIONAL SPECTRUM OF A ONE-DIMENSIONAL CHAIN WITH
RANDOMLY DISTRIBUTED IMPURITY SPRINGS
by
Hin-Chiu Poon and Arthur Bienenstock
Division of Engineering and Applied Physics

Harvard University, Cambridge, Massachusetis

ABSTRACT

The frequency spectrum of a one-dimensional lattice containing
randomly distributed impurity springs has been evaluated to first order in
the concentration, a, of impurity springs. It is shown that, with some
mathematical manipulation, the solution can be placed into correspondence
with the solution of Langer for the analogous problem of isotopic impurities.
The virtual crystal approximation which yields the correct elastic constants
requires an effective soring constant, ¥, which is given, in terms of normal

spring constant, ¥y, and the impurity spring constant, vy', by the relation
g y T Yy g ’ y PY

1/ = [(1-@) /7] +q9/7" .

I. INTRODUCTION
In recent years, considerable progress has been made in the
calculation of the vibrational properties of solids with isotopic impurities [1].
For a variety of reasons, however, there has been less consideration of

problems in which the interatomic force constants are varied.
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Such problems appear, at first, to be unrelated tec actual physical
situations. In the disordering of two alloys of the beta-brass type, CuZn and
CoFe, however, the constituents have almost identical atomic masses. The
primary result of disordering appears to be 4 change of force constants, Since
the change of the vibrational spectrum wi*h order iniiuences the equilibrium
state of order, it will be necessary to understand these changes before a
complete understanding of the order-disorder process is possible.

First zteps in this direction have been made by Wojtowicz and
Kirkwood [2] as well as Oguchi and Hiroike [3]. In both cases, however, there
are approximations which considerably limit the applicability of the results.
While it is highly likely that any solution of these problems will be approximate,
therc is reason to believe that more satisfactory approaches may be found.

For that reason, we have turned our attention to the formal solutions of certain
simplified problems. It is hoped that these solutions will lcad to some insight
that will, in turn, lead to better approximations. This first solution of a one-
dimensional problem has been solved to develop useful mathematical procedure.
Solutions of problems of higher dimensionality have been obtained. They will
be presented when they are understood.

The problem which is treated here is that of a linear chain of atoms
with the same ri.ass and nearest neighbor interactions. Randomly positioned
springs are replaced by springs which have a different force constant, and
the spectral distribution function is calculated to first order in the concentration
of the impurity springs. The mathematical techniques used are almost identical

to those of Langer [4] who obtained an exact solution, to first order in the
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concentration, for the spectral density function of a one-dimensional chain
of identical atcms intc which isotopic impurities are randomly placed. Indeed,
we proceed by showing that the problem considered here can be placed in the
same form as the problem which Langer considered, and then use his results.
The corresponding order-disorder problem is beth simple and
uninteresting. Consider a chain consisting of two distinct chemical species,
A and B, of the same mass, which alternate in position in the ordered ground
state. Let the ordering process and the vibrational spectrum be controlled by
nearest neighbor interactions, such that the spring constant beiween A-B pairs
is different from that between A-A and B-B nearest neighbor pairs. Let the
force constants between A-A and B-B pairs be identical. Such a situation
would be obtained from the polar model of Mott [5] or Harriscn and Paskin [6]
if their interactions were of sufficiently short range {which they are not) and
if the rep+lsive interactions were all the same. The first configurational
excited state of such a system is one in which there is an A-A ¢r B-B pair
somewhere along the chain, but perfect short range order elseawhere. That
is, there is a simpie antiphase boundary. The corresponding vibzztional
spectrum would be one for an isolated single impurity spring constant placed
at random in the chain. The next excited state which maintained the
composition would consist of two such antiphase boundaries, One would be
between an A-A pair and another between a B-B pair, so that they would

be separated from one another by more than a nearest reighbcr distance.

{This restriction can be lifted by the choice of suitably choser grand
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canonical ensemble.) It follows that the randomly placed impurity spring
constant problem can be brought into close analogy with the one-dimensicnal
order-disorder problem where the concentration of impurity springs is
analogous to the decrease of the short rangc order parameter ‘om unity,

It should be noted that the choice of randomly positiored impurity springs
makes this solution applicable to the order-disorder problem, rather than the
impurity problem, That is, one might be concerned with the effect of randomly
distributed impurity atoms on the vibrational spectrum. The major feature of
these impurities might very well be the changing of force constants, rather
than the changing of the mass. To treat this problem, however, one would be
obliged to consider randomly distributed pairs of impuriiy springs on the sides

of the impurity atom, rather than randomly distributed cingle springs.

II. FORMULATION OF THE PROBLEM
The fermulation of the problem presented here is similar to, and whenever
possible and practical, identical to that presented by Langer [4]. We consider
a very long chain in which every atom has the same 11ass. There are two types
of force constants present in the chain, y and 4'. "Whe concentration of

impurity force constants, v', is q, where q <<l The unperturbed chain

s
has q = 0.
For a particular distribution of springs, ¥ and %' along the chain, the

equations of motion are

mXg =Yg g1 Fpp X Yy g K%y (n
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Here X, is the displacement of the atom at the site £, and Yp 4. 18 the
]

1
force constant acting between atoms at site £ and f-1. The equations of

motion can be rewritten as
mx,-y (x, 3 = x) -y (xy, - %)
- §a 1, - : -
B SRR YR /TS Bk QLRI (2)

The transformation to the normal coordinates, Qk y Of the unperturbed

lattice is

N/2
- ! 2mikt
xl = W Qk exp - - lwt s (3)

m) " . N/2
where N is the number of atoms in the chain. Substitution of Eq. (3) into

Eq. (2) yields

2 2
WZ-oh Q== ) 8, (4)
kl

where

o =u_ lsin @R/, w_ = (47/m)'/? (5)
and

B g " L-2sln (e k'/N) Z exp [271 (k' -k)L/N]

1
X [(‘yl, j41- Y exp (m 1k'/N)-(7l’l_1 -v)exp (-mik'/N)] . (6)




ARPA-18 1-6

Equation (4) is identical in form to Langer'sr Eq. (4). The entire
difference between the two problems is contained in the explicit form of the
Qk, k' » 28 expressed in Eq. (6).

For a particular configur.. °n of springs, we can write
-1, 2 . Q2
[P (w )]k, k' (Uk ~1w) 6k, k! + Qk, k! (7)

such that iq. (4) becomes

Z (D-l)k k! Qk' =0 . (8)
kl

Following Langer, the spectral distribution function for this configuration,

defined by
gl =g Y 5@ %02, (9)
n

where the Qn are the exact eigenfrenquencies for the pariicular configuration

of springs, is given by

_ 2w lim 1 2, .
g(w)——,’-r— N—=oo —N-ImTrD(w +ie). (10)
e~0

To obtain the spectral distribution function for the random distribution
of springs g(w), we must average over all configurations which are
consistent with a fixéd value of q. As shown by Langer, it is sufficient to
take the configuration average, D (wz +ie), of D ((.)2 +ie). D(wz +ie)

is diagonal in k, so that
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‘W iim

1 2, .
e+C k

glw) -

III. CONFIGURATION AVERAGE

Following Langer, we obtain from Eq. (7) for a particular configuration,

2. Yk
Dk,k'(“’) = 3 3" Z k" k” kl(w) (12)

2 1 5 P k! 7 ), k-
DW= |%ynw-"72 2t/

W -Ww 2 W -w " (wk-w)(wk.-u)

+ ... ] . (13)

The average over configurations is performed at this point. Since the wk's
are properties of the unperturbed lattice, it i3 only necessary to obtain

configurational averages of ihe products & We

& L ... & .
K,k Tk, k, k_,k

proceed to obtain these averages. The first, <¢>k X! > may be obtained in

the same manner as Langer obtained his Eq. (19). We get

(-2i)sin (k' /N)

< Qk,k' > = Non < Zexp [27i (k'-k) 2/N]
|
X [(71 M+1° v) exp (i"k'//N)“('Yl -1 7v) exp ('i“k'/N)] > (14)

Rl 1 =;‘ﬁ‘§:—
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This expression is evaluated by keeping ! fixed while summing over configura-
tions. We get zeru contribution from any configuration in which Y 441 ©OF

’

71’ .1 - T Since 71, #1 - ¥' with frequency q, one obtains

< -y> = < YD = 1 15
71,1.*.1 Y 71’ 9.1 " q(y' -7, (15)
and
4 8in® (zk'/N) ] -
< kT T W@ afy' -v) Zexp [2mig(k' -k) /N]
2
2
= q(.)kl A 6k,k' ’ (16)
where
N= (/-1 (17)

Next consider the second-order term,

> = (-4/N?m?) sin (ak, /N) sin (k' /N)

D S i S

x < z {exp 27i (k, -k) Il/N exp 2ui (k'-ki)lZ/N

4,1 (18)

x [(71 ,ll+1‘7) exp (ﬂikl/N) '('Yl ,11_1-‘7) exp(-‘lrikl/N)]

1 1

x [(71 12+1 -7v) exp (Wik'/N) - ('Yl

2 , 22_1'7) exp (-ﬂ'ik'/N)]} > .

2
Terms which »re first order in q appear in the configuration average
of the four terms represented by the product of the square brackets whenever

the two springs of one of the four terms are identical. That is, when IZ= L,
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12. =4 -1, or 12 = 11 + 1. This com»lication distinguishes the problem
considered here from that of Langer, in which only the terms 4= 12 contribute
to first order in q. This extra complication forces us to use a slightly
different approach in the evaluation of the general product of the &'s. For the

second-order term, however, it is easy to sum the appropriate terms.

For terms with 4 = 12 , We obtain

(-4/Nm2) sin (ﬂ'l;l/N) sin (7k'/N) 6k ! q('y‘---,r)2
x [exp mi (k1+k')/N + exp - Wi (kl+k')/1\_’ . (19)

Terms with 12 = 11-1 yield

(4/Nm2)sin (ﬂcl/N)sin (rk' /N) Gk K Q(‘Y"’Y)Zexp [Tfi(kl-k')/N] , (20)

while terms with 12 = ll+1 yield

(4/Nm® sin (7k /N) sin (7k'/N) 8, q(y'-7) exp [-milk;-Kk')/N].  (21)

Summing the contributions from (19), (2C), and (21), we obtain

- 2 2 2 2
<¢k,k Qk k'> - (Ukl t"k'/N)q)‘ ok,w*‘O(q ) . (22)

1 7
It should be noted thal although the intermediate steps are different,
the result is identical to Langer's Eq. (22).

We now proceed to evaluate the configuration average of the general

product,
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<® .0 ., ..... o >
k’kl “1'1‘2 kn-l’kn
n Tk k Tk Tk
= #2“1‘ sm( h%)ain —ﬁ"-) ..... sin(—wnll—) sin (——ﬁ-—)
x <D exp 2T [(k,-k)L, +(k -k, )45+ Hk_-k_ )2 ]
L, L P A S LA Bt A I L AR n r.1’
Lo 1

-+ [(7_,1, 141 -7) exp (mik /N) - (7‘1’ -1 -7) exp(-7ik, /N)]

X [(712, l2+1 -Y) exp “'ikz/N) - (‘Y‘Z’ ‘2_1'7) €xp ('TikZ/N)]

X therriann.
x [(vy 4 =Mexplmik /N)-(y, , -y)exp(-wik /N)]>, (23)
n’ n+l n » “n-1
where kn = k' . Equation (23) can be written in the form
<® . ..... L >
k, k1 n-1°’"n
. k
(-Zl)n -!—1[- q ﬂ__L
| sin ( )
NP m? i N
x < {exp 2B [(k -K)L +.. . +(k_-k_ )1 (24)
PR 1 | S n n-1""n‘
£,... 4 o,=+1 o =+1
1 n 1 — n —
n
x —I:I- [cj (-yL’ 1407 exp (T 1o'jkj/N)]} > .
j=1 A I
e - =1 - & - — T
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Let us fix our attention on a particular ll . For o, = + 1, Eq. (24) will

yield terms of order q only if, for all values of 8 =2,3,...,n £ =1 and

’ s 1
o =+ l, or ls =4+ 1 and o = -1. Similarly, for oy =-1, terms of order

q will be obtained only if £ =1, and o =-1 or £ =1£,-1 and o_ =+ 1.
8 1 8 8 1 s

These restrictions are summarized by the condition that

_ 1
L=0+s (0 -0.). (25)
¢
Thus, we obtain all the terms of o ‘der q in Eq. (24) by substituting Eq. (25)
into it, dropping the summations ovear all lj but lj = ll , but retaining the

summations over the (rj . The result is

<® . ....®
K Ky kn-12¥n

>

. k .
o (=2))” nl & T 2mi
= -I:I*;;;F- q (y'-v) j|=l1 sin ("T\f") xz exp [ =~k -kt i

L (26)

- imrlkl n T
X Z - 2 o, exp (——N——)j:ﬂ;aj exp [-N-(kj-kj_l)wi-crj)+o-jkj] .
crl:il o'n=il

The summation over f, in Eq. (26) can be performed immediately
This leaves the summations over the o variables. The coefficients of ks

in the exponents which remain are

I
[

{iu’[crl-(wl-crz)]/N} = (im crz/N) for 5 ,

n
(&Y

{i1r[(al-crs)+crs-(0'1-cs+1)]}=(i‘n‘as+1/N) for s n-1, (27)

{i‘lr[(ul-crn)ﬂrn]/N} = (i‘lrcrl/N) for s =n .
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Therefore, Eq. (26) can be rewritten as

<® .. 0

k’kl kn--l’k‘n>
( Zi)n n Tk. 5 n
= — sin (=l )|x (y'-)
LS C R AR N K,k Y
(28)

n .
m
x z ( 'l-ll o'j) exp [-N-(o'zk1+o'3k2+. . +o‘nkn_l+¢rlkn)] ]
o ..o I
1 n
Since the 2/jase equivalent variables of summation, Eq. (28) can be rewritten

as
<® R >
k’k‘l kn~l.’kn
(-Zi)n nf2 ‘Irkj n mio. k,
= W q (7' -7) (;‘I sin —Nn-) Z Ecj exp (_&-L_) .
c v
1" 'n

(29)
In this form, the sums can be performed readily. Using Eq. (5), the average

becomes

_ n 2 2 2 n-1
<Qk’k...ﬁk K >-6k,k q\ W W cec Wy /N . (30)
1 n-1’"n n 1 n-1

Equation (30) is completely equivalent to the term which is linear in

q in Langer's Eq. (25).

.uﬂtuuﬂ
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IV. THE VIBRATIONAL SPECTRUM

Because of the equivalence presented above, it is possible to use

Langer's results directly. He finds vibrational modes associated with each

value of k, and with frequency given by
w = oWt A - il"k
Here,

2 2
w, ak (wm ~w )

k- Z )

A
2 2
wm ™ (1-K7)

and /
2 2 2.1/2
po Y e e
I TTRpLS

m

where

K= A(L4N) =1 - (v/v .
In these expressions, l“k is a measure of the width associated with .ach
phonon of wave vector k due to the lattice disorder.

In addition, the density of states is given by

2 1 -1/
g(w)=—i-Re -w t -

W 172
' 2 2 .
(wm -0 ) + iKw

Since Langer has discussed his results extensively and carefully,

(31)

(32)

(33)

(34)

(35)

we shall only draw attention to certain aspects of the results which were not,

apparently of primary interest to him, or are unique to the problem considered

a4
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It should be noted, however, that itis 1/y and 1/¥' in this work
which correspond to Langer's M and M!'  respectively. This correspondence
become= obvious when the different definitions of A are examined.

In the long wavelength limit, and with ' &~ ¥

wz ~ 4 sin (-ﬂﬁ)/M[(l-q)-%% —3. ]. (36)

Thus, in the elastic limit, an average spring constant can be defined by

1 (-9 |
¥ Y +-3r- (37)

The frequency spectrum is, in this limit, identical to that which would
be obtained if all the springs were replaced by the correctly averaged spring.

It is imuortant to note, however, that this correct averaging, to obtain
a virtual crystal approximation, is of 1/7, rather than v itself.

While this result might be expected, its application, as an approximation
to a two or three dimensional system,is highly suspect. The obvious reascn
for this is as follows. When the linear chain is placed in tension, the atoms
adjacent to the impurity springs are constrained to move along the line of
tension. The analogous situation in three dimensions is one in which tension
is applied in a manner which corresponds to the limit of a pure longitudinal
mode of the unperturbed lattice. When the impurity springs are introduced,
however, equilibrium may be reached by displacements which have components

normal to the direction of the tension. In this case Zq. (37) is not valid.
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It is also of some interest to examine the form of I"k , as given in
Eq. (33). It is easily seen that l‘k =0 for Wy = 0 or W =W, . Since rk
is positive, it must have a maximum somewhere in between these two points.
That maximum occurs for

2 2 3-(1+8K2)1/2_|
2 (1-k) |

(38)

for all possible valuesof KZ. The functional form of 1"k is shown in Fig. 1.
The maximum is quite evident. In the paragraphs which follow, an attempt
is made to explain this behavior.

The mathematical origin of thes«: widths is discussed by Langer. Each
member of the ensemble is not periodic, and k does not label an eigenvector.
Thus, a measurement which fixes k will yield a spread in frequencies.
Although k becomes, in a certain sense, a good label for the ensemble average,
the spread in frequencies must remain. Mathematically, we see the spread

in the form of the average spectral distribution function,

g(w}'—‘-?w N-wo N Im Z Dk (W +ie). (39)
€0 k

For the unperturbed chain,

2, . 2 2 .
Dk (w +1e)=1/(wk -w -ie€) . (40)
" ".e poles of Dk(wz) occur at the eigenvalues associated with k. Langer's
cresults may beparaphrased as follows., For the perturbed problem, there are

a number of frequencies, denoted W o which are positions of the poles of
’

each Dk (w2+ ie) . These poles lie at the solutions of
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“’kz“"kz,i+GL: (“’kz,i ) =0 (41)

where, from Langer's work,

2 q’“"kz
Gk(w ) = 2 ' (42)
1+"-§-Z !
k' Yk ¥

to first order in q .
The contribution to g(w) from any one of the frequencies associated

with k is proportional to the residue at the corresponding pole of Dk (uz),

which is

Res {D _(b%)} = [-2w_ .+(8/8w) G, (%) 1!

W= k Uk,l k / U:wk i . (43)

“k, i ’
As indicated in Fig. 2, this residue is largest for We in the vicinity of Wy
b4
and diminishes rapidly on either side of this point as  (8G/8w) |w=uk becomes
y 1

iarge.

With these results of Langer, the mathematical origin of the form of
Fig. 1 is readily visualize” Y¥or each k, Fk is proportional to the range
in w over which the We have appreciable residues. Let n, be the number
b

of modes for which the residues associated with the W, ; are appreciable,
y

and Py be the density of modes of the unperturbed system. Then

Fk oc nk/pk oc ny (wmz- ukz)l/z . (44)

!

A

| ]
i

|

| Mﬂamlk
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Thus, it is the singularity in the density of states 'vhich causes the vanishing
of I'k for w_=w_ . Thatis, although n, may belarge for k=k___,
the infinite densi.y of states causes the total energy spread to be very small.

It is evident that I“k =0 for k=0. The form of the increase of I‘k
with increasing k, up to the maximum is shown more explicitly, however,
by an examination of Figs. 2 and 3. In these figures, Gk(wz) and (wz-wkz)

_ 2 2 2 2 __ 2
are plotted versus w for the cases Wy << W and W & oW - The

e}
intersections of Gk(wz) with (wz-wkz) cccux at the values of w equal to
the wkfi . The residue associated with tnese ulf,i is appreciable, however,
only at those values of w’ ., such that 8G/8w is small. In Fig. 2, only
’
the central We satisfies this condition, while in Fig. 3, there are a number
td

of terms for which the residue is appreciable. Thus, in the form of Eq. (44),
the maximum in I"k may be pictured as a competition between the slowly

increasing n, and Py which increases more slowly for small k, but

increases rapidly near k .
max
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FIGURE CAPTIONS

Fig. 1 The functicnal form of I i for the case of
K =2/3, q=1/10.
! 2 P> 2 2 2 2
t (o -
Fig. 2 Gk{w ) and {w W, ) versus w for W << w m
o 2, ., 2 2 2 2 _
Fig. 3 Gk(w ) and {w W ) Versus w for W R .
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2. THE ELASTIC SPECTRA CF
TWO-DIMENSIONAL DISORDERED LATTICES .
by

Hin-Zhiu Poon and A:-hur Bienenstock

ABSTRACT

The elastic vibrational spectra cof perturbed sgnare lattice systems with
nearest-neighbor central and ncncentral interactions hiave been derived. The
unperturbed system censists of masses, m, on the latt:<e points and interacting
with force constants, a , which determines the resistance to compression, and
B , which determines the resis‘ince to shear along tl.e direction {10). In one
case, the perturbations are Ng randomly positioned isotopic impurities of
mass m', where N 1s the number of lattice sites. It is shown that the elastic
spectrum for this, and zll other isotopic impurity systems, is completely
determined by the average mass, m= (1 ~q'm + gm'. In the other case,
corresponding to certain order-disorder situations, the constants describing
the interactions between 2Nq randcmly positiored pairs of nearest neighbors
are replaced by a' and f'. To first order in q, the resulting elastic modes
are then completely determined by ar average o, a , where

q la'-a)
atia'-a)2/mitan L la/B)1/?

a = a [1+

and B which is obtained from the previous expression via the interchange of
@ and B . The appearance of P in the expression for a implies that the

virtual crystal approximation {ails. It is shown, however, that two different

2-1
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forms of the virtual crystal approximation place “ounds on the a and B , 1In
accoruance with a general theory of Paul. A physical interpretation of the

results is also presented.

I. INTRODUCTION

In a recent paper [1] (denoted, hereafter, as P-B) the authors obtained
an expression for the vibrational frequency spectrum of a one-dimensional
chain of atoms with the samemass and nearest -neighbor interactions. Randomly
positioned springs were replaced by springs which had a different force constant,
and the # :ctral distribufion function was calculated to first order in the
concentration of the impurity springs. The mathematical techniques used were
a modification of those used by Langer [2] tc solve the identical problem for
the same unperturbed system in vhich the impurities were atoms with a different
mass. While the motivation for the previous paper was an attempt to obtain
more 1information about the effect of disordering on the vibrational spectrum of
binary alloys such as CuZn and CoFe, ir which the masses of the two constituents
are almost identical, the one-dimensional nature of the problem limited the
value of the solution. Nevertheless, the mathematical techniques developed
are quite helpful, and will be used aere.

In this paper, two related problems are treated. In both cases, the
unperturbed lattice is a square lattice array of atoms with same mass, and
with nearest-neighbor central and noncentral forces. In one case, the two
force constants describing the interaction between randomly positioned nearest-
neighbor pairs of atoms are replaced by a different pair of force constants.

In the other, randomly positioned atoms are replaced by atoms of a different mass.

it
il
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Fer ccavenience, we call the preblems the imjurity spring and impurity
mass problems, In both cazes, the elastic conetants are obtained as a function
of concentration, q, to first order in q.

The most striking feature of the results are that while the virtual crystal
approximation is found tc be valid fcr the impurity mass problem, it is valid only
for special cases in the impuritv spring probler:. The explanaticn and implications

of this result are discussed.

1. THE UNPERTURBED CASE
In the unperturbed ~ase, we are considering the vibrational spectrum of
a square latrice array of atoms of mass m. Ir order to maintain both stability
and only nearest-neighber interacticns, thes=z interactions must be ncncentral.
We label the atom at the origin by {(0,0) ard its four nearest neighbors by (1, 0),

(0,1), (I,0), and {0,1). The equations cf motion of the I-th atom are then

. ) I _
mxl,a”'Z Coza' £, 4 1 a Y (1)

Here, the {' summation runs over the atom ! and its four nearest neighbors,
and the @' summation runs over the two orthogonal coordinates.

The force constant mafrices have he forms

C(1,0) = C(1,0) = - ({,” g) 5
c(,1) = C(o,1) = - (g 2) ,
C 0,0, = z{mp;(é (1’) ‘ | (2)
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For central force interactions, = 0 and the lattice shows zero
frequency shear modes for propagation along certain principal directions,

Expressing the displacements in terms of normal modes,

*ty Z Q ylk) exp il Ry-w 0], G)
k,

where j (=1 or 2) labels the two orthogonally polarized modes, and v labels

a displacement component, we obtain the normal mode solutions,

4 X 2
o T lesin® - +Bsin” L ],
k a k a
2 _ 4 X 2y
Wg,k T m (BeinT 5 tasint ], )
with eigenvectors
Q (k) = (1) Q, (k) = (%) (5)
1= 0 ’ 2 — 17

Equation (5) irplies that for any propagation vector k , the iwo normal
modes, 1 and 2, have polarization vectors along % and /y\ , respe _tively.
Thus, one of the two labels, j and v, of Qj, v in Eq. (3) is redundant, and

will not be used hereafter.
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1”2, THE MPURITY SPRING PROBLEM

A. Formulation
In this problem, *he force constants, a and f, associated with 2N
randomly pcsiticned paire of atoms, are replaced by force constants a' and
B' . To eimplify the equations of motion, the four nearest neighbors of an atom
which are separated frem it by vectors (1,0}, {T,0), {0,1), and (0,T) are
denoted by  f:1', f+2,, ‘i+3), and (L1 4), respectively. The equations of

motion can then be written in the general form

[%,1\ (¢ 0\ [3%p1 - *g1,1 " *m2,)
-w’m \ s
%ol OB \ZXp Xy 2" Xy 2
B o X:3,1 X144,
+
D a

13,2 7 X144, 2

[B By O ,

+ (6)
\ 0 T, h3 X2 " X3, 2
PRy pia ¥ i N S T O

| \ 0 XAy gy \xz,z 134, 2

e
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Equation (6) can be rewritten in terms of the normal coordinates of

the transformation

xlﬂ = Zf 07(1_5) exp ik- Bl . (7)

Since all the force constant matrices are diagonal, the x and y components of
the displacement are independent. Thus, equations of motion can be written
simply for each direction, using Eqs. (6) and (7). In addition, the two directions
ar indistinguishable. Thus, it is sufficient to study one direction of polarization
over a complete quadrant of the propagation plane. For the x-components of tl;ze

displacements, we have

2
wmxy gra(Zxy g exgy gt Xy ) PP(2R G axys 1 Xpy )

b4
=laay o))y = Xgy M-y o)y 1 oxpy, )
- - - { -
BBy g3y 17X )RRy gy Xy ) (8)
By substituting Eq. (7) into Eq. (8), and using Eq. (4) to simplify the
resulting expression, one obtains

2 . 2 L
-mWw Z Q1(1_<_)exp1l_<_ I_il-l- mz wl’lin(li)expﬂ_(_ Bl
k k

= (a-al’ﬂi)z QI(E)(lnexpikxa) expik: B‘l
k

+ (a-at, I+Z)Z Q1 (li)(l-exp-ikxa‘;exp s z_ll
1

F(B-By gy3) ) Q) (K)(1-expika) expik- R,
k

tB-By gra) Z i) -csp=tic A Bap 8530 Ly . (9)
K

—

i

)

y

!
bl ot
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Arey muitpoving both sides of Eq. (9) by exp-ik' BI and summing over

1

one ColaIng

3
N < o K
m ‘”l,k"'“-‘Ql k'
Y
=Y Q Eoooep iikakY, - R[
/-" ~ . - - e —
i,k

s [ie o, yl-expik a)+ (a- . ,){l-exp-ik_a
[0y pikealta-a, . )il -exp-ik a)

. i o . - ll i 8 . . N3
p lar. 51‘5 l ‘.Xp lkya‘) ' ‘B ﬁt’ £+4)\ exP lkyd)} (10'
Aft=r ‘v «~~hinging k and k'and performing some trivial mathematical

manipuls-icns, o {10 zan be written in the form

R N (1) A
s K - o )u!‘kf = Z q’k,k' QI{E’) (11)

l‘ = w—"
k
where
TEU PR > {exp-i{k-k’) - R
-‘f.},\’.. Nimo [/, T P-1iKk~-K 21

SR Lsin kY oa sl ik 'a/e
Lorg gy & sit ~1"xd,2) exp { xa;&)
. y e SR , > Y =i k! ]
ity , @ D gkxa ) exp ( .kxa/Z)
uf . ﬁ =‘n ‘-k;,ﬁ ‘3) exp {1 kyg/lz)
I A . [ ’ IR /
B, . B e -‘ky,f.,Z) exp {~ikia, 2)] } . (12)

- R D L e A
Thea sups 15 ap. s o 2y ~, 18 used to indicate that polarizatiuons along x

only ar . v ‘uded,
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Equation (11) is identical in form to Langer's [2] Eq. (4) and Eq. (4) of

(P-B). The three problems differ only in the form of the @ Kt

2 =5

follow the approach described in (P-B) because it is closer to the metinods used

We shall

here, although the basic technique was originaliy presented, and is more
completely described, in Langer's paper.

For a particular configuration of springs, we can write

e AL L 1)
such that Eq. (11) beccmes
z WA, @ =6 (14).
! e
The spectral distribution function for ‘his configuration, defined by
glw = #ff’m %za(ﬂnz'wz), (15)
n

where the Qn are the exact eigenfrequencies for the particular configuration

of springs, is given by [2]

g(w)=‘;_“ ,\;ﬁ"w-ﬁ Im Tr DM (W® + i g) . (16)
€e—~0

In this expression, use of symmetry has made it unnecessary to include
D(Z)(wz + ie) .

To obtain the spectral distribution function for the random distribution
of springs, g{w), we must average the distribution function over all

configurations which are consistent with a fixed value of q. As shcwn by

!

!

!

!

I

]

|

!
Sy
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I . . (1 2, .
Langer, it is sufficier® tc ‘ake the configuration average,_ﬁ( ) tig), of

i —
D‘l);azé ie€'. As 'n the cne-dimensional problem, D(”(wzn‘ie) is diagonal

in k. sc tha:

- . _4w lm 1 w2
Ew =% N-ow N Im z Dli W T oigr . (17)
c—=0 k

B. Configuraticn Averages

Ae in {1}, Dl*(l ’k &%) may be iterated to yield

1)
o
1) Do 1 k., k'
Dy jor 07 = oy 0y g
== e ~= W W
1 i)
v e fx
: Z 2oz o . (18)
kl awk W )(Ukl = W )
k), k

The average over configurations is performed at this point. Since

the uk are picp=rries cf the unperturbed lattice, it is only necessary to

1 1 1
obtain configura‘icral averages of the producis f( )kl lil)kz Q(zzk l((n»)k'
We prereed ‘c optain these av *rages. The first, <<I>k k’ is easily obtained.
We need
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- (i) = ('?-i) . s 1y .

\@K, I-S"> = —N;'_n— < exp -1 \E“E ) Bl
1

x {sin(k;(a/z){(al Hl-a)exp(ik;(a/Z)-(al Hz-a)exp(-ik}'(a/Z)]

+ sin (kKia/2)[(8, ,5-Plexplikia/2)-(8, 4 4-Blexplikia/2)]} > (19,

This expression is evaluated by keeping { fixed while summing over
configuratiams. No contribution to the terms linear in the a's is obtainea

from any cornfiguration in which « o is equal to a . The

L 141 %1 12
analogous situation holds for the terms linear in . Denoting

Aa =a'- a

and

AR =p'-3, (20)

the configurativnal average is

(1) _ (=2i) Z L .
< QE: K > Nm exp i (k'-k) Bl
1
2, . 2, )
x q [2iAasin (kxa/Z) + 2iABsin (kya/Z)] . (21)

Performance of the summation over 1 yields

) o - 20, . 2.,
< Q}’ k! > = {4q/m) [Aasin (kxa/Z) + A8 sin (kya/Z)] Glﬁsl’" (22)
Next, consider the second-order term

i
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D

1

YT I

21) : Y i )

B ) ewily ko Byewikid) By
4,1

2in i a /9Ny P i /2y
x < {sin ‘klxalz'[ a, , ,-aexplik,_a/2)-(e, 1

- ~of-1
L R a)exp! 1klxa/2)]

i

Nl : ; (g . ) i3 - _ _8
+ aln(klya/2)1\511,11+3 Biexp fi klya/Z) (ﬁll, 11+4 Blexp( 1klya/2)] }

imil! s 2V -\e et N
x{sm\kxa,z_. [‘ai s a,exp(lkxa/Z) ‘a

-a)expl-ik'a/2)]
2012 x

Ly, 1,42

1 gin ‘k'ag 72V .B] st o /oy
+ gin 1\}.3,’-,42,‘31 i :3 B)eXP{mYa/Z) B,

ol +4~6)exp(-ik;’a/2)]}>. (23)

, 1

2’2

As before, only terms in which the a; :
’

and B, respectively, contribute to the right-hand side of Eq. (23). In

and B, . differ from a
i, j

addition, a< in :I -Bj, only the product terms in which the Y and
1071
p

: represent the same springs as the @, . and f. . , respectively,
10 2232 2032

contributs ‘¢ first order in q. It should be noted thLat all the a-terms
correspond to springs which are parallel to the direction (1), while all
8..terms correspond to springs which are perpendicular to the direction (1).
Thus, all preduc terms which involve both a's and B's must vanish, to

firs* order in q, for a product of ®'s of anv order. As a result of these

considerations, we may write

A g pr—
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1) (1) (-2i)°
<® % B x> =33 ) explilk;-k)'R, Jexp[ilktk R, ]
k k) k), k7T 2 1 2
ll,lz

x {< [all’ £ +] -&) exp (1k1xa/2,

(all’ l1+2-a)exp(-ik1xa/2)] sin (klxa/Z)

x[(al P +1-9) exp (- ik} a/2)
b

2’72

- (atz’ lz+2-a) exp(nik)"a/Z)] sin (k! a/2) >

+ <(;3[1’ ll+3-p) exp (iklya/Z)

_(pl,l

; i 2)
44 B) exp { 1k1ya/2)] sin (klya/

1

x [(ﬁlz’ lz+3-ﬁ) exp (ik;,a/Z)

- By g 4a-B) exp (-ikia/2)] sin (k_a/2)> ) . (24)

2’ 2

The important feature of Eq. (24) which makes this problem soluble
is that the two-dimensional average of Eq. (23) has been split into two one-
dimensional averages which are mathematically identical to those which
have been evaluated in (P-B). This splitting occurs, for terms which are
first order in q, for all order products of the &'s. As a result, using

Eq. (30) of (P-B), we obtain the general expression




ARPA-1§ 2-13
) 1; 1)
<y - @ - >
l\!}il .:l’_lfz l(q..l’i(n
q5 -
_ l(y }_(n , 4 )n ” o Z klxa 2 kzxa L2 knxa
- __.i\_r.a: .;_n Aa; sin ——2—“ sin —'-2—— .. .81n -T—
X, a 2 /ka \ k a

/ a
SN sinzk-% sin k—g—)

C. Cal:culation of the Elastic Spectrum
The form of Eq. {25) indicates, as expected, that 51 s diagonal
in k. As a resul't, we may follow Langer and write the diagonal elements

(D i
of D(l‘ as Dk‘l) where

1
4

- w2+ Glil)(wz)

(1)
Dy

i = (26)

2
.Uli

The configuration average of Eq. (18) may then be rewritten, using

Eqgs. (25 and 126) as

[ 2 2
k

= N m Wi k ~ ¥ i

/ . 2 n-1
. - -1 ..n i k_z sin” (k,_a/2)
. \r § ,' . >
G;l): \ 1) 4, | (Aa}n . 2 x (§ 1> ) .
= \

\ .2 . -1 1
n 2 kﬁ /T sin (klya/z) n )
+{aB; sin” | -5 \L/ 5 > (27)
l(l dl,E )

i
&

h.
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Since there are no terms in which both Aa and AP appear, Eq. (27)

is easily transformed into the expression

[4q(Aa)/m] e’ (kxa/Z)

cll) -
S  4(aa) sinz(klxa/Z)

1+ —— 2 - JZ
1_(1 1 k1

[4q (AB)/m] sin(k_2/2)

¥ .}E(k /2) : (28)
81n a
mN /, 2 2

kLK 7

The entire problem is then reduced te an evaluation of the

summations

: sinz(kxa/Z)
= -k Z = (29)
k

1,x " Y

and

~ > 5 . (30)
W - W

. 2
sin“ (k_a/2)
7e Sy y
/o
]2 “‘:_k.

Because of the symmetry associated with this lattice,

1 (a,B) = J(B, ). (31)
Eq. (31) implies that one need evaluate Eq. (29) only. Transforming the

right-hand side of Eq. (29) into an integral, we obtain

Bt ’B/aya sin® (k_a/2) dk_ dk
im a_ X X v (32)
“¢—~0 411 . 2 — 2 . )

1/ (4a/m)sin (kxa/Z) + (48 /m) sin (kya/Z)-wz-ie

el
b
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In Appendix I, it is shown that the value of this integral is given by

L= im/21a)an”  (@/8) /2 + (im2w?/32a8)(p fa)}/? (33)

under the conditions
mw2/4a << 1
and

mw2/4ﬁ << 1, (34)

These conditions limit our discussion to the elastic portion of the
spectrum. It would be reasonably simple. but tedious, to obtain higher
order terms in the wz power series expansion of I. Since interesting
physical results are obtained from the lowest order terms, we shall not
continue the procedure, but shall continue with the determination of the
elastic portion of the spectrum.

Substitution of Eq. (33) into Eq. (31) yielus
. - 1 . 1
T = (m/2npjtan” (8 /a) /% + (im2w?/32a8)(/8) /2 (35)
Substitution of Eqs. 131) and (33) into Eq. (28) yields

(4qAa/"rn) sin2 (kxa/Z)

K 1+ (28a/maitan @/B) 7%+ (imw®Aa/8ap) B /)
(4 AB /m) sin” (k /2
14 (28B/Bitan” (B/a) /%4 (imwAB/BaB)(a/p) /¢ (36)
-] — B
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As in one-dimension [1, 2] we may associate the positions of the poler

of the function D{'(l)(wz) with the modes of vibration of the lattice with the

randomly distributed impurity springs. The frequencies, for each k, and
with polarization vector parallel to & , are given by the real part of the roots
of the equation

wkz-wz + Glil)(wz) = 0, (37)

A complete solution of Gél)(wz) would lead to a number of roots, for fixed

k, of Eq. (37). The existence of these roots is a mirror of the fact that
k, for any one member of the ensemble, is not a good label. By restricting
our calculation of Gf(l)(wl) to small wz , and keeping terms of lowest order

only in the resulting small parameters, we have suppressed the multiplicity

of these roots. The resulting expression for the elastic mode frequencies is

given by
g G q (Aa) 1.2
i~ sin (k_a/2)
bom l: 0:+(2/11)(1.\0:)tan'1(az/ga)l/2 . x
48 q(ap) 2
+ = 1+ sin (k a_/Z) . (38)
i ﬁ+(2/1r)(AB)tan“1(ﬁ/a)1ﬁ- y

The solution of Eq. (37) also contains an imaginary part. Writing
the solution as

(.J:(.J1k+A1 - il K ? (39)

A

\

¥

i

|

1
il
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the imaginary part

C que [ @esin’lka/2)
Lk 4(ap)l/? if[u(ZAa/na)tan"I(a/a)l/Z]z

(a8)% sin’ (k a/2)

+ Y
B[1+(2A8 /nB)tan"* (B/a)}/41%

, (40)

corresponds [1] to the reciprocal of the lifetime of the mode. It should be

noted that I"l is of one order higher in the small parameters of Eq. (34)
’

¥

than is Al,k . Thus, although the low frequency modes are shifted in frequency,
they are quit_e well defined.

Finally, the density of states, g(w), as indicated in Eq. (17), and
calculated in Appendix II, is gi.en by the expression

_ wm

glw) = W : (41)
Here, a and E are defined by rgs. (57) and (58). These results will be

discussed in Section V, after the analogous expressions have been obtained

for the isotopic impurity problem.

IV. THE ISOTOPIC IMPURITY PROBLEM

A. Formulation
In this problem, the unperturbed lattice is again the square lattice
discussed in Section II. In this case, the Nq atoms at randomly positioned
sites are replaced by isotopes of mass m'. The mass of the isotope at
site ! is denoted by m,. The equation of motion of the atom at this site

is given by

i et a - " oo ——e
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N R R N R VA RS AU (“ OV [ %417 *p2,1
2| ™ QP g Fm, 2| ™ \0 B Xy 27 %22
/
1 (PO (R 23| 0 [P O [ ®y 17 Faeg
& —— ’ ’ + — ’ ’
m |C a m |0 a

27 143, 2 X, 27 *144, 1

_ _L-L\ fa 0 07 w1 [ 0N [0 17 %4421
"y \0 Bl %27 *m1,2] (O P 1%y 27 %2, 2
X B o) (X017 Xp3) ) +(5 0 xz,1“"z+4,1\ o
) ") Xp 2" *13, 2 \° @ "z,z“xz+4,z/
\

As in Seccion III, the x and y components of the motion ar~
completely decoupled, and may be considered separately. As a result of
symmetry, it is sufficient to consider the x-component motion for a complete
quadrant of the space of the propagation vector, k. The transformation to
the normal coordinates of the unperturbed system, Eq. (7), yields the

equation of motion,

-(‘JZZQI (kJexpik-R + {a/m) Z[Z-exp (ikxa.)-exp(-ikxa)]Q1 (k) expik: R,
k k

+ (B/m) [2-exp (ikya) - exp (-ikya)] Ql(li) exp ik’ B—l

1=~

= Z QI(E) [(l/m)-(l/ml)] expik’ I}_l [a (Z-expikxa-exp - ikxa)
k

+ B (Z-expikya-exp - ikya)] . (43)

— - - e~ - e

2t g
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i-quation (43) is similar in form to Eq. (9). By mathematical manipulations
which are similar to those which lead from Eq. (9) to Eq. (11), Eq. (43) is

transformed into

W - 0 QI = - ) Q) 8 (44)
K o
where
L' T m
Q}S,k_‘ = —N--— L(ﬁ-l) €Xp 1(1_(."_15)'81. (45)
1

This result is identical to that obtained by Langer [2] for the one-dimensional

problem. It is easily shown that the entire difference between the two problemsis

represented in the form of the function Glil)(wz) which, for this problem, is

given by
2
qlw
G2y X | (46)
k (U ) 7z
= Ul k!
A ’y =
L+ ¥ 2
E! 1,1.5.'
where
A = (m/m') -1 , (47)

The remainder of the problem consists of the evaluation of the sum

w e ) 2 /
Z 1,k 4 sin (k;{a/Z)
) Z " m Z 2 2
K YLK T T P
2
— sin“{k' a/2)
4 y
+ B Z 5 — (48)

o ———— e et g s —_ > = = s —— s
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The two sums which appear cn the right-hand side of Eq. (48) have been
evaluated in the Appendix I and have been used in Section III, for the case
where Eq. (34) holds. Substituting Eqs. (33) and (35) into Eq. (48), and

inserting the result into Eq. {46), one obtains the result

, -1
6Mw? = anu? (1414 Pm /@) 2] (49)

With this result, it is easily shown that the frequencies of propagation,

in the elastic limit, are given by the expression

of = ut | (14qK), (50)
where

K = 1-(m'/m). (51)
The inverse lifetimes are given by

2 2
(1) qA muw 1,k
Lo = T 172 (52)
- 2 (1+\)" {aB)

Before leaving this problern, we should point out that another aspect
of it has been treated by Mahanty, Maradudin, and Weiss [3]. They considered
the local modes which arise when m'< m. Many of the mathernatical
difficulties, which these authors surmounted quite elegantly, have been

avoided in this work because cttention was restricted to the elastic spectrum.

V. DISCUSSION - THE VIRTUAL CRYSTAL APPROXIMATION
One frequently finds statements in the literature that the so-called
"virtual crystal approximaticn' must hold for the elastic spectrum of a crystal

containing a small number of impurities, or a small degree of disorder. In

4

y

4

!
mﬁmnﬁ
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this approximation, the masses are all taken as the average mass, and the
spring constants are all taken as the average spring constant. The justification
given for this approximation is usuaily that the wavelengths of the modes are
very long compared to the range of the local perturbations, so that these
perturbations are just averaged. Other authors have carried the apprcximaticn
further, and have concluded that the failure of the virtual crystal approximation
to explain the vibrational frequencies near the Brillouin zone surface, of
dilute alloys, is evidence for the existence of short-range order in these
alloys. In this section, we examine this approximation with the aid of the
solutions obtained in the preceding sections.

The two one-dimensional solutions obtained previously [}, 2] yield
virtual crystal approximation-type results to first order in q . Langer [1]
finds that the elastic spectrum of a system with is lopic impurities is
completely described by an average mass given by

m = (I-gfm+qm'. , (53)

In (P-B), the authors find that it is the inverse of the spring constant
which must be averaged. That is, taking ¥ as the nearest-neighbor spring
constant of the unperturbed system, and %' as the spring constant which
replaces it at randomly positioned sites, the elastic spectrum is completely
described by an effective spring constant, y, which is given by the expression

L/y = [{1-q)/¥] + (a/7") . (54)
Henceforth, we shall speak of this equarion as the virtual crystal approximation

for spring impurities.
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For the isotopic substitution in two dimiensions, the situation is quite
similar. Equai..3n (50) can be rewritten as

4,.,2=m(,l;1‘2k[m(l-q)+qm‘]-1 (55)

,

to first order in q . Since mwl'?‘,k is independent of mass, this is the result
expected from the virtual crystal a_pproximation.

There is good reason to believe that the approximation must hcld for
the elastic spo~trum of a system of any dimensionality and any concentration
where the only substitutions are isotopic and the system is homogeneous on a
macroscopic scale. The reasoning goes as follows. The masses enter the
dynamical equation through acceleration terms onlv. Thus, they do not
contributeat all to the static =lastic constants, which depend only oa the
interacticns. The only way that the masses enter into the ~lassical expressions
for the elastic spectrum is through the density, since the elastic spectrum
is, of course, entirely determined, for a homogeneous solid, by a knowledge
of the elastic constants and the density. Tlius, the only condition for the
applicability of the virtual crystal approximation to the elastic spectrum of
an isotope-substituted systern is that it be homogeneous. That is, one must
be able to divide the crystal into volume elements whose dimensions are small
compared to the wavelength of the elastic modes, all of which have the same
density associated with them. In this case, the virtual crystal approximation

is just a means of calculating that dersity.
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The argument just presented leads one to suspect that it 18 in the case
where the spring constants are chdnged that one expects a breakdown of the
approximation. This is the case. For comparison, we may rewrite Eq. (54)
as

Y=v[l+aqAy/ly+ )], (56)
Comparison of Eq. (38), for the perturbed system, with Eq. (4) for the
unperturbed system, shows that one can cefine effective force constants, «

and B , by the relations

@ca |1 e e (57)
atAalz/m)tan” { /B) /7

and

B+AB2/mtan”  B/a) /% )

These results indicate immediately that a knowledge of q, @ and &' is not
sufficient to define a . The relationship between a and P also enters into
the expression for a. The same is true for [-3— .

The reasons for this dependence can be visualized easily. Consider
Fig. 1, which portrays th: displacements of atoms in the region of an impurity
spring from equilibrium whiie participating in a longitudinal mode. Here, we
have taken «' > @ . The intersections of the dashed lineg »epresent the
equilibrium positions. The straight vertical lines represent the lines of

constant phase associated with the mode of the unperturbed system. Atoms 1

and 2 are connected by a spring which is stronger, and which prevents them
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from separating by the aistance associated with the unpert..cbed mode. As
a result, there is a shear component in the motion of, say, atom ! with
respect to atoms 3 and 5, and the shexr constant § enters into the frequency
of a mode whose frequency is determined entirely by a in the unperturbed
system. Some of the relationships of this picture to the mathematical solution,
Eq. (57), are easily seen. We note, first of all, that this is a calculation to
first order in q . Thus, we can neglect other "wrong" springs. As a result,
the picture indicates that there is no shear motion of atom 1 with respect to
atom 2. Thus, B' does not enter into the expression for @ . Similarly, we
would expect, from this picture, that the virtual crystal approximation would
hold for a if B = 0. This is the case, since (2/m) tan-l(oo) = 1, making
Eq. (57) iduntical to Eq. (56). Setting B = 0 also has the =ifect, of course,
of making the lattice unstable. Finally, we may look at the problem as the
picture does, with a classical perturbation theory viewpoint, treating (Aa)
as the perturbation on this mode. In first order, the energy shift is obtained
by letting the system undergo its .nperturbed motion. In this order, 8 should
ant ap;.>ear. It is only in second order, when the motion has been changed to
first order, thzt the effect of § should ente» in. It is readily seen from
Eq. (57) tha. B only enters into terms of second and higher order in A«a .
Equations (£7) and (38) do show that the two virtual crystal approximaiions
which may be used to obtain average spring constants form upper and lower
bounds for the actual @ and B, for the model discussed here. The

tan-l(a/ﬁ)l/z and tan-l(ﬁ/ar)l/2 in these equations have upper and lower

.«mdf
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-1 i/
bounds of 0 and 7 /2 . For tan ({3/’0.,’:1'/" 0 , these cqguations becomne
Va - [sl-q}/2] + [q/a'] (59)
and
B = (1-q)f + gf' | (60)

For tan 4{6_/&)1"‘2 = 7 /2, of course, ‘he situations are reversed. Equation (59)
corresponds o the 1/y averaging which was obtained in one dimension, while
Eq. (60) is the straightforward averaging of the spring constants. Any inter-
mediate values of tan-l(ﬁ/o)l/z' will yield results whic- li¢ between the two
simple forms of averaging. Note that this discussion has hocn restricted to

the cases where Ae/a> -land AB/B > -1. These conditions must be satisfied

if each atom has its motion centered . bout a position of sti:hi» equilibrium

in the static crysial.

Paul {4] has obtained the identical upper and lower bounds for the
elastic constants of isotropic mutiphase materials. He shows that such bounds
hold in general in the situation where "... the constituents are distinct and
capable of separation by purely mechanical means (e.g., no' soiid solutions)".
In the language of lattice dynamics, Paul is res*ricting his work to situations
in which the force constants between atoms belonging to the interiors of
different constituents are zero. That is, the elastic constants associated
with each of the constituents ~ompletely describe the interactions. This
situation is quite similar tec that discussed here. In the determination of the
elas*ic constant's, it is only the pairwise interactions, and not the masses,

which are sigrificant. Thus, since nearest neighbor interactions only are
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considered, we may consider each impurity spring as anindependent constituent,
and the results are consistent with Paul's bounds. For some reason that we
do not understand, the fact that the system is not isotropic does not seem to
be important in this case. This analysis raises the possibility, however,
that important and interesting effects may appear when longer range inter-
actions appear.

Figure 2 shows the deviations of @ and B, as given by Egs. (57) and
(58), from the virtual crystal approximation. In these graphs, we have taken
a/8 = 9. This ratio was obtained from the elastic constants of B-brass, as
measured by McManus [5] by setting a/p = C /[(C“-Clz)/Z]. As
expected, a lies close to the curve defined by Eq. (59), while B is given,
approximately, by Eq. (60). A choice of ¢/8 =~ 1, corresponding to a
strongly covalent crystal, wculd lead to lines for @ and § which have
slopes, at q = 0 and 1, that are approximately equal to the average of the
slopes associated with the two virtual crystal approximations.

Since a and f also determine, through Eq. (41), the spectral
distribution function for small wz , the remarks about @ and P apply to
it as well.

Finally, it is important to note that the random spring calculation
performed in this work applied specifically to the order-disorder problem.
There exists another interesting related situation which remains to be
treated. It is the case where impurity atoms, which are substituted into

the two-dimensional lattice,have approximately the same mass as the solvent
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atoms, but change the spring constants., In this case, the four sets of spring
constants associated with the interaction of the impurity atom with each of its
neighbors inust appear together in the averaging. Work is underway on this
problem, and it is expected that the results will scon be presented. The
results obtained here indicate that it is highly likely tha* the virtual crystal
approximations are inadequate for the description of the modifications of the
elastic spectrum of such a system. If this is the case, any as"empt to assign
observed breakdowns of the approximation to crdering or clustering, without
corrcborative diffraction evidence, would appear unjustified. This is
particularly true when the modes are not a portion of the elastic spectrum,

but are associated with the Brillouin zone surface.
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APPENDIX 1

EVALUATION OF THE INTEGRAL OF EQUATION (32)

The value of the integral

n/a f/a .2
lim S/ sin (kxa/Z) dkx dky

I_e-'O

Tk o (4a/m)sin2(kxa/2)+(4f5/m)ainz(kya/Z)-wz-ie

(A-1)

is required in the limits wz <<4a/m and w2<< 48/m. We begin by fixing

ky and evaluating the integral over kx. Consider the case wz >(4f /m)

sinz(kya/Z). Let

'Z = w? - (48/m) sin® (k a/2) ,

and
m/a sinz(k a/2) dk
I = = ~——
"y (4a/m) sin (kxa/Z) -w'-ie

Letting

zZ = exp ikxa,

wr? = (m/a)w?
and

€ = (m/a) e,

Eq. (A-3) becornes

[ . m § (z-1)* dz
1 4daai ,
aal z [zz-(Z-w"Z-ie")z + 1] ’

(A-2)

(A-3)

(A-4)

(A-5)

(A-6)

(A-7)
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where the contour of integration is the unit circle. The denominator of the

integrand has three roots,

2y = 0, (A-8)
. .

z, = (1 -%w"z-%ie "+ i[1-(1 - %-w"“.. lzie")z]l/z (A-9)

z, = (l-30"%-2ie") -1 [1-(1- 3w ? -5 iem?2]1/2 (A-10)

Since w“z <1, z) is inside and z, is outside the un:t circle. Thus, we obtain

the solutions

ro) ] (z1-1)°
I, = 2 + . (A-11)
1 2aa z,2, lezl-zj.:)

L -
Evaluating Eq. (A-11) in terms of the variables of Eq. (A-1), we obtain
i (8 /) 2 [(mw? /ap) -sind(k_a/2)]}/2

I = BT &), Y (A-12)
1 2aa

[1-(mwz/4a) + (B/a) i’ (kya,/Z)]172

In a similar manner, we consider the case w2< (4ﬁ/m) sinz(kya/Z).
. 2 . 2 2 o
Letting w'” = (48/m) sin (kya/Z)uw , (A-13)

we obtain the integral

I, =
Z

"fa ain” (ka/2) dic_

A (4 /m) sinz(kxa/2)+w' :

m7
2aa

/) 2[sin’(k a/2)-(w%m /48)]'/2

- (A-14)
[14+ (B/a)sinz(kya/Z)-(wzm/4a)]1/?‘ .

Substitution of Eqs. (A-12) and (A-14) into Eq. (A-1) yiclds the expression
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13[a
am
1= &2 dk,
-1/a y
. =1 2 1/2 .y
- (2/a)sin” " (mw” /4B8} (a/a)‘/2[(wzm/4p)-sin2(kya/2)]l/dey
+ Z____
e 0 [1-(mwf/4a)+(ﬂ/a)sinz(kya/Z)]1/2
a e (ﬂ/a)l/z[sinz(k a/Z)-(me/4p)]l/2 dk
- Tia Y y

[1+(8 /a)sin®(k_a/2)-(w*m/4a)] /¢
(2/a)sin” L (mw? /4p) /2 "y -

(A-15)
It should be noted at this time that th: integrands are all real. Thus,
the first and third terms of the right-hand side of Eq. (A-15) contribute the
real part of I, while the second term yields the imaginary part.

For convenience, we denote:

T/a
I, = (am/87a) f dky = m/4a , (A-16)
-1 /a
(2/a)sin" (mw?/4p)! /2
[ . iam B 1/2 S [(mw2/4{5)-sin2(kya/2)]1/2 dk,
4 ima ‘o ) — 17Z
0 [1-(mw/4a)+(B/a)sin (kya/Z)]
(A-17)
am B 11/2 m/a [sinz(kya/Z)n(mwz/‘lﬁ)]1/2 dk,
I5 - ﬁi—fr?(a )

. 2 . 2 172 °
[1-(mw®/4a)+(3 /a)8in®(k a/2)
(Z/a)sin.l(rnw?'/‘lﬁ)l/2 e e . ya/ :

(A-18)
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Let

-
H

sin (kya/Z) ,

(mw?/4p) << 1 ,

O
N

and

= (mw2/4a) << 1, (A-19)

Then Eq. (A~17) can be writter as

ima2 B 1/2 (?‘/2 (6 tZ)l/Z dt
i, = (=) - . (A-20)
4 Bma ‘a . [1-6'+ (B /a)t®] 1/2 [1-t ]I/Z

It e easily seen that t << 1 over the range of integration. Thus, we
may approximate the entire denominator of the integrand of Eq. (A-20) by unity
to obtain an expression which is good to only first order in 8 and §'. In

this case we may write

&)}
I, ~ ;,_1;’{5(-?;)‘/? g (5-8-)1/2 at
0

(By1/2 (A-21)

a a

Substitution of Eq. (A-19) into Eq. (A-18) yields the expression

2 5.1/2
_ (_E_)I/Z (t7-0) " dt _ (A-22)
s * e g (-1 7% [1-61+(p /a) €7 ]/
(5)1/2

In this case, the approximations are less straightforward. It is
ciear that 0' may be set equal to zero, since it is always very much less

than the other terms contained in the radical in which it appears. Further
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simplification of the integrand is hindered by the fact that 0 /t2 ~ ! near the
lower limit of integration. Nevertheless, we may write [1-(5/t?')]1/Z ~ 1lin

the integrand for the reasors which follow. The factor [1 :~(B/¢r)t2]i/2 of the
denominator is a relatively slowly varyirg function. As a result, the remainder
of the integrand is sharply peaked near the upper limit of integration. In this
region, it iite reasonable to replace the radical of the numerator by unity.
Hence, if _ contained the entire ccontribution to the real part of [, it would
be sufficient to make this replacement. Unfortunately, however, a major
portion of 15 is cancelled by I3. Thus, it is necessary to justify this replace-
ment a bit more carefully. We do this by calculating an upper and lower bound
to the integral. It is then shown that the difference between the two is negligible
compared to the real part of I. To compute these bounds, we note that the
integrand is positive and real over the range of integration. In addition, over
this range, [1-{6/i%5)] < [1-(6/t%)]'/2 < 1. Thus, lower and upper bounds to the
integral can be obtained by using the upper and lower bounds of the radical

in the integrand. To obtain the values cf the associated integrals, we need

1
m 1/2 t dt
m (B f
Ta "« 1/2 [l_tZ]I/Z [1+(ﬂ/a)t2]172
(6)
m_ M ] (-;;-)1/2 + 0(5), (A-23)
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and

1
2?_;5 (_E_)I/Z S dt

oi/z 0 P (14 (B /e 1) /2

[a+(B-a)6 p62]1/2 + a )
- 2 (8917 10 172 + 5
6 (a)

6 1/2 (B-a)
B og [0 20

Equation (A-24) shows clearly that the ditference between the upper

and lower bounds is of the order oi 8log 6. This should be compared with
the result for I, obtained by using Eq. (A-23) for 15 , and substituting the

results of Eqs. (A-16) and {(A-21) into Eq. (A-15}). We get

1 Bl @2, m 8172 (A-25)

Since the real part of the right-hand side of Eq. (A-23) is of order unity,

we are justified in neglecting the difference between the upper and lower bounds

of IS'
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ARPA-18 APPENDIX Ii
EVALUATION OF THE SPECTRAL DISTRIBUTION FUNCTION
FOR THE IMFURITY SPRING PROBLEM

Asg indicated in Eq. (17), the spectral distribution function for this

problem is given by

slw) = ;“1‘7". o Im Tr DU wPhie) (A-26)
e~0

Using Eq. (26) for D(l) and Eq. (36) for G(l), Eq. (A-26) becomes,

for small w? ;

glw)= hlrféo (%/NH)ZJ [(4E/m)sin2(kxa/z)+(4B/m)sin2(kya/2)-w Z-ie]-l
€

m/am/a
= (a%w/ 1) ii_:glm f { [(4&'/m)ein2(kxa/z)+(46/m)sinz(kya/z)-u"-ie]“ldkxdky.

Here, a and P are defined by Eqs. (57) and (53), respectively.
Let I(wz) be the integral of Eq. (A-27). It can be written as
L= 2(I + L}, (A-28)
where
(2/a)sin~ (muw? /ap31/2
Il = dk

y
0

m/a
x \( [(4<-7z-/m)sinz(icxa/'2)+(Aiﬁ/m)sin'?'(kya/Z)--mz--ie]-1 dk_, (A-29)
-ﬂ/’a
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and
wﬁa
L= J dky
(2/’3.)917U.'1.l(mmz/'lﬂ)1/2
/a
x [(42:?/m)»3in?‘(kxa/z)+(4a‘/m)sinz(kya/z)--w"‘-i.s]"1 dk . (A-30)
- /a

The real part of the denominator of the inte grand of IZ is always positive. As
a result, the imaginary part of the integral is of first and higher order in ¢,

and vanishes when the € iimit of Eq. (A-27) is taken.

Let

g% = mol/af | (A-31)

w'? = (m/a) [WP- (45 /m) sin® (k a/2)], (A-32)
‘Hfa dk

L = m X , (A-33)

& a 7/a 4sinz(kxa/'2)-w"z-ie

Then
(Z/a)sin'lg

I, = S Ty dk . (A-34)

0

Substitution of Eq. (A-4) into Eq. (A-33) yields

i, = = § . S , (A-35)
aa z -(2-w" -i€e)z +1

where the contour is the unit circle.
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The denominator of the integrand of Eq. (A-35) is similar to that
of Eq. {A-7). It has roots, z, and z, , given by Egs, (A-9) and (A-10),
respectively. As betore, zZ lies inside and z, lies outside the unit circle,
Thus,
13 = (mi/aa) [Z‘n'i/(zl-zz)]
_ . 2 .= . 2 /
= (27i/a) {[w”-(4B/m) sin (kya., 2)]
x [(4a/m) + (‘I-E/m) sin2 (kya/Z)-wZ]} 1/2 . (A-36)
After some simple manipulations which use Eq. (A-31), substitution
of Eq. (A-36) into Eq. (A-34) yields
=1,
. (2/a)sin” " & dk
I. = m7 . y
17 a@m)/? X It -sinz(kya/Z)]l/ 2[1-(mwz/4a)+(6/5)sinz(kya/z)]l/ %
(A-37)
To lowest order in wz , v'e have
-1
| .
. (2/a)sin 3 dk
| [ o __imT
| — 1/ .
| a@p/t g (E5-sin“ca/2)
.2
im®
= — (A-38)
‘ Zaz(a 6)1/2
Substitution of Eqs. (A-28) and (A-38) into £q. (A-27) yields the
density ..f states
- wm
glw) = — 2 (A-39)
2n @@P) '/
pr—— =5 - T = e s —— — =gy
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FIGURE CAPTIONS

Pictorial representation of the displacements of atoms in the
vicinity of an impurity spring, while taking part in a (10)
longitudinal mode, The dashed lines represent the equilibrium
positions, The impurity spring, with &' > &, is between the
atoms denoted 1 and 2. Shear along the lines 3-1-5 and 4-2-6
introduces the factcr B into the expression for the effective & .
Comparison of the effective force constants, ® and B, as a
function of concentration, g, with virtual crystal appreximation
predictions. Here, A /G and A B/B have been taken as -0, 3,
while @/B = 9. The dashed line represents the linear averaging

of the force constant, while the solid curve shows the averaging

of the inverse of the force constant,
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